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whether all interaction effects are zero or whether all 
levels of A have the same effect. A decision on whether 
to reject the hypothesis is based on examination of the 
ratio of the goodness-of-fit parameter for the two least- 
squares estimates; this ratio is tested as the usual vari- 
ance ratio F. 

The actual calculations were carried out by a gen- 
eral computer program HANOVA, available on re- 
quest from WCH. A further discussion of the model 
may be found elsewhere (Hamilton, 1964, for example.) 
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K. Knox, N. R. Stemple and P. Mackie to various parts 
of this project are gratefully acknowledged. The work 
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Small-Angle X-ray Scattering by Rods and Sheets: The Interpretation 
of Line-Collimation Results 
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The conditions are examined under which direct interpretation is possible of small-angle intensity data 
for isotropic solutions of long rods and thin discs collected with the use of infinite line collimation 
conditions and on an absolute scale. It is shown by extensive computer calculations, using five different 
rod models and three different disc models, that in all cases where data obtained under point colli- 
mation conditions can be unequivocally interpreted (i.e. free of dependence on a theoretical model) 
in terms of the number of electrons per unit length (area) of rods (discs) and the appropriately defined 
radius of gyration, the very small-angle infinite line collimation results can be used directly to give 
the same information. 

The effects of the finite length of rods and finite area of discs are considered and the conditions 
analysed where the measured scattering may be interpreted as if the rods were very long and the discs 
were of very large area. 

Introduction 

Kratky and co-workers and Luzzati and co-workers 
(for reviews see Kratky, 1963; Luzzati, 1963) have dis- 
cussed the small-angle X-ray scattering method as ap- 
plied to macromolecular solutions where the intensity 
of scattering is assessed on an absolute scale, i.e. rela- 

tive to the energy of the incident beam. 
The intensity of X-rays scattered by a dilute, iso- 

tropic, macromolecular solution depends on the cross- 
section of the X-ray beam at the specimen. Cases that 
have been considered are point collimation and both 
finite and infinite line collimation (for references see 
Chu & Creti, 1965). Scattering results are normally 
obtained with slit collimation and for the purposes of 
interpretation the results are corrected back to point 
focus conditions by numerical methods. Luzzati (1958, 
1960), however, showed that results obtained with the 
use of infinite line focus conditions at the specimen 

could, for spherical and rod-like particles, be inter- 
preted directly. It was decided in the present work to 
examine further the direct interpretation of infinite line- 
focus data from rods and to consider sheets also be- 
cause of work in progress in this laboratory on bacterial 
flagella and bacterial cell walls. 

Luzzati (1960) interprets the scattering by rods under 

line collimation conditions by using a r0d-m0del with 
a given distribution of electron density perpendicular 
to the rod axis and by evaluating the differences be- 
tween the predictions of the model and the experimen- 
tal results. It is not clear in the formulation of the 
problem as used by Luzzati (1960), first how far the 
physical parameters deduced for the rods reflect the 
model used and, second, whether to interpret line-col- 
limation results on the basis of any other rod model 
makes mandatory their conversion into data appropri- 
ate to point collimation conditions. The calculations 
reported here are addressed to these two problems in 
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connexion with rods and also to the comparable pro- 
blems connected with sheets. The discussion of the 
X-ray scattering by sheets is made in terms of a thin 
circular disc of large surface area. 

The approach we have adopted for rods is to take 
five models of rigid cylindrical rods which are as dif- 
ferent as possible (Table 1) and to determine indivi- 
dually for each condition of collimation how far and 
under what experimental conditions the intensities of 
scattering for the five models (calculated with the same 
values of mass per unit length ¢t and radius of gyration 
Re) could be interpreted in terms of the known values 
of/z and Re. The rod models were chosen partly for 
their potential value in interpreting results and partly 
for expediency in calculation (the Maxwellian rod is 
in the second category). In a similar manner the inten- 
sities scattered by discs of three types (Table 2)with 
the same thickness and mass per unit area are com- 
pared for point and infinite-line collimation conditions. 
It was also found necessary to investigate the effects 
on the angular dependence of the scattering of finite 
rod length and finite disc diameter. 

It should be noted that the angular range of applica- 
tion of this work is at larger angles than those at which 
the universal Guinier exponential scattering l a w -  
which is expressed in terms of the radius of gyration 
with respect to the centre of gravity of a particle - is 
valid. The radii of gyration appropriate to this work 
are defined in the next section (see also Guinier & Four- 
net, 1955). 

Theoretical 
General 

Consider a right circular cylinder of radius R and 
length L. Let the orthogonal axes r and z be in the 
directions of R and L respectively. If L >), 2R this figure 
behaves as a rigid rod and if L ,~2R as a rigid circular 
disc. Let the particles (rods or discs) in solution be 
randomly orientated with respect to the incident X-ray 
beam and the solution be sufficiently dilute for the 

particles to scatter independently. Let each particle 
contain a total of m electrons. The electron density of 
the solvent is Q0 (e.~-3), the electronic partial specific 
volume of the solute is g/ (A3.e -1) and the electronic 
concentration of the solute is ce (number of electrons 
in solute/number of electrons in solution). 

Following Luzzati (1960) the 'reduced' intensity of 
scattering in(s) at an angle 20 to a point- l ike beam in- 
cident on the specimen, expressed as a fraction of the 
energy of that beam, is given by: 

in(s) = cem(1 - Qo~,) 2 F(s)  (1) 

where s = 2  sin 0/2 and each particle has a scattering 
factor F(s). 

F(s)  in the general case is given by Fournet (1951) as: 

Q(r, z) 2zrr cos (hz cos 0) F(s) = ~ ,;o r z 

x Jo (hr sin 0) drdz sin 0 dO (2) 

where J0 is a Bessel function of zero order, h = 2zcs, and 
the distribution of electron density is given by o(r,z).  

For infinite-line collimation conditions the general 
expression for the 'reduced' intensity of scattering re- 
ferred to the energy of the main beam is (Guinier & 
Fournet, 1955; Luzzati, 1960): 

jn(s) = eem(1 -- QoV)Zo~-(s) (3) 
where 

So o~'(s) = 2 (sE+t2) + d t .  (4) 

In equations (1)-(4), F(s) and ~'(s) stand for general 
values of the point and line collimation scattering fac- 
tors; they are defined below for particular cases. 

Scattering by rigid rods 

The parameters describing the five rod models used 
to evaluate equations (1)-(4) are given in Table 1. Re is 
the radius of gyration of the rod about its long axis. 

Table 1. Description o f  rod models 

Type of rod o(r,z) Rc 2 

Plain constant R2/2 

r ~  g l  

General plain o(r) = A - - ~  (A -- -~ ~-i + B 

r = R  
I 

B ] (q = R1/R) 
I 

r = g l  

Gaussian* o(r) = A e- at2 1 / a  

General Gaussian o(r) = Ae-arZ A/ aZ + B /bZ 
+ Be-br2 A/a + B/b 

Maxwell o(r) = Ar2e- ar2 2/ a 

* This is the density function used implicitly by Luzzati (1960). 

Notation for scattering 
factor (point focus : 

line focus) 

F(s) : ~ (s) 

G(s): - -  

F'(s): S~'(s) 

G'(s): ~'(s) 

M(s): .~¢(s) 
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(i) Point  collimation 

Equation (2) was evaluated for the five types of rod 
for rods of any length. Numerical calculations for this 
general case were made only for plain and Gaussian 
rods but all the rod-types were considered in the special 
cases L --+ co. The expressions used for calculation are: 

i n/2 sin 2 (lrLs cos 0) 4J~ (2~r Rs sin 0) 
r ( s )  = 

o (~rLs COS 0) 2 (2rcRs sin 0) 2 

x s in0d0 ,  (5) 

where J~ is a first order Bessel function. 

1 4J~ (2rcRs) 
r ( s )  - . (6) 
r.-,oo 2Ls  (2~zRs) 2 

1 4 
G(s) - . 
z~oo 2Ls [ (A-B)q2+B]  z 

{ BJ, (2rcRs) ( A - B ) q 2 S , ( 2 r c q R s ) [  ~ 
x 2re Rs + ~ - ~ / ~  j . (7) 

~!2 sin 2 (rcLs cos 0) 
F'(s)  = / exp ( -  2re z s z R z sin 20) 

,Jo (rcLs cos 0) 2 " 
x sin 0 dO. 

1 
F'(s)  - . exp ( -  21r 2s 2 R~2). 
L---, ~ 2Ls  

1 1 
a' (s )  - . 
r.--, ~ 2Ls  (A/a  + B/b) 2 

B x [ ~ e x p ( - ~ ) + - - ~ - e x p ( - - S - ~ 2 s 2 ) ]  

1 [ 
r.--,~ 2Ls  " exp ( -  zc2sZR~) 1 2 

(8) 

(9) 

(lO) 

(11) 

Equations (5) and (6) are given respectively by Four- 
net (1951) and Guinier & Fournet (1955). 

In terms of in(s) from equation (I), writing l t = m / L  
the electronic 'mass' per unit length, equations (6), (7), 
(9), (10) and (11) give the relationship: 

2[Sin(S)]s-,o 
[P] = ce(1 00~v) 2" (12) t,----~ o o  

Equation (12) is based on equations which are valid 
for s >> 1/L and some care is necessary in the extra- 
polation to zero scattering angle; this point is dealt 
with by Luzzati (1960), Equations (6), (9), and (11) 
provide a simple method of determining R~ since in 
the three cases 

[sin(s)]~m~u~--~- ½eep (1 -O0~u) 2 (1-2~2R~s2). (13) 

For the long general plain and long general Gaussian 
rods the slope of a graph of sin(s) versus s 2 is not 
simply related to Rc (see values in Table 1). 

(ii) Infinite line collimation 

For the cases relevant to equations (5), (6), (7), (8) 
values of the scattering factors for line collimation 

conditions can only be produced by numerical integra- 
tion following the substitution of the point collimation 
parameters into equation (4). For the long Gaussian, 
long general Gaussian and long Maxwellian rods, how- 
ever, values of the line-collimation scattering factors 
can be put into closed form: 

1 
~-'(S) = exp (-- 7r2 aRc2s 2) K0 (/r2R2s 2) (14) 
L--.oo 

where K0 is a Bessel function of imaginary argument 
(Watson, 1952). Equation (14) was first given by Luz- 
zati (1960). 

f¢,(s) 1 1 { A  2 (--~a2S 2 ) 
L-+oo 2 L  " (A/a  + B/b) 2 - J -  exp 

x K0 + - b  T e x p  b K0 

2 A B  + ~ e x p [ - ~ f f 2  ( l + @ ) s  z] 

( 
~3/2 } 

+--4- RcsWl"(~2R~s2)-~W~'~(~ZR~s2) (16) 

where We, re(x) is a Whittaker confluent hypergeo- 
metric function (Whittaker & Watson, 1962, p. 340). 

(iii) Effect  o f  f ini te  rod length on scattering fac tors  

The scattering factors for point collimation con- 
ditions are derived for L ~ oo from equations (5) and 
(8) by noting that sin 2 (rcLs cos O)/(rcLs cos 0) 2 behaves 
as a peak function and is negligibly small except when 
cos 0 ~ 0. For shorter rods a second approximation 
to, for example, equation (8) may be taken (see also 
Stokes, 1957) as follows: 

1 1 1 
F'(s)  = exp ( -  2~ 2 R 2 S 2) 2 L s  2 (rcLs) 2 4 

L/Rc~ 1 

sin (2zrLs) 1 cos (2rcLs) ] 
× (~rLs) 3 + ~- . (lrLs) 4 + . . . . .  (9a) 

Taking the first two terms of the expansion, we have 
from equation (4): 

~'(s)= 1 { r/Rc~ 1 ~ exp ( -  7r z R2cs 2) Ko Qr 2 RZ~s z) 

R d L  Erfc (l/2rcRes) } (14a) 
~z R e s  

where 

2 e_t2dt.  E r f c ( x ) = l - ~  o 

An equation similar to (14a) but for flexible rods was 
given by Witz, Hirth & Luzzati (1965) and some calcu- 
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lations based on equation (14a) but without its deriva- 
tion are given by Luzzati, Witz & Timasheff (LWT, 
1961). 

In a similar manner equations for the scattering fac- 
tors for plain and Maxwellian rods for L/Rc ~ 1 can 
readily be formulated. 

Scattering by rigid discs 
The parameters describing the three disc models are 

given in Table 2. The values of Re are referred to the 
plane passing through the centre of the disc and paral- 
lel to its surface. 

(i) Point collimation 
Equation (5) is applicable to the determination of 

F(s) for a plain disc of any radius. For a plain disc of 
large radius we have for s >~ 1/R. 

F(s) = 1 1 sin 2 (nLs) . (17) 
R ~ oo 7oR 2 2n S 2 " (TcLs) 2 ' 

also 

1 1 1 
a ( s )  - 
R~oo nRZ" 2ns2 " [ H B + H I ( A - B ) ]  z 

[ H B s i n ( 2 n H s )  sin (2hillS) ] 2 
x 2nHs + Ha (A - B) (18) 2nHx s 

(./z 4J~ (2nRs sin 0) 
F'(s) = ~.Jo (2n Rs sin 0) 2 

x exp (-4nZR~2s 2 cos20) sin0 dO. (19) 

1 1 
F'(s) - exp ( -4nZR~s z) (20) 
R ~ ~ nR 2 2ns 2 

From equations (17), (18), and (20) and equation (1), 
the electronic 'mass' per unit area M = m / n R  2 is 
given by: 

2n [s 2 in(S)]s~o 
M = (21) 

Ce(1 - -  Q0~ff) 2 

subject to certain conditions relating to the extrapola- 
tion (Luzzati, 1960). For small angles of scattering Re 
can be determined from equations (17) and (20) since 

2n [sZin(s)]smans -->- ceM (1 -~0~¢) 2 [1-4re 2 R 2 s 2 ] ,  (22) 

but no such simple relationship for Re follows from 
the small-angle behaviour of equation (18). 

(ii) Infinite line collimation 
The line collimation scattering factors for plain discs 

of finite area, for infinite plain and layered discs, and 
finite Gaussian discs are given by substituting equa- 
tions (5), (17), (18) and (19) into equation (4) and are 
not readily expressed in closed form. For the Gaussian 
disc of large radius we have 

1 [1 - Erf(2nRes)] 
o~-'(s) = (23) 
a ~  nR 2 " 2s 

where 

f~e-t2dt Erf(n) = 2fiz ~ 

It follows from equations (3) and (23) that in this case 

M =  2[sjn(s)]s-,o (24) 
Ce(1 -- ~01ff) 2 

and Re is given by 

-- ( 4nRes'~ ceM(1 Q0//I') 2 1 (25) 
[Sjn(S)]sman s ~ 2 l/n ] " 

C a l c u l a t i o n s *  
Rigid rods 

F(s) for plain rods was evaluated from equation (5) 
by Gaussian quadrature (see also Malmon, 1957) for 
ranges of 2sR between zero and about 3-5 for L/2R = 
10, 20, 100. For the subsequent calculations of o~(s) 
from the infinite integral in equation (4), values of F(s) 
over a wide angular range were required. In the range 
of s chosen the numerical value of F(s) fell by a factor 
of 106 . 

Calculations of F'(s) for Gaussian rods for com- 
parison with F(s) for plain rods were made on the as- 
sumption that the two types of rod had the same value 
of Re. Thus equation (8) was evaluated for L/2 I/2Re = 
20, 100. 

The line-collimation function o~(s) was calculated 
for plain rods, using equation (4) for the angular 

* Numerical values are available on application to the 
authors. 

Type of disc 

Plain 

Layered 

Table 2. Description o.f disc models 

o(r,  z )  Re 2 

Constant L2/12 

z =  + H i  

o(z) = A 
z = - - n l  

AHat +B(H 3 -Hat) 
3 [AHt + B ( H -  H1)I 

z = z l : H  

=B 
z= 4-H1 

(L=2H) 

Notation for scattering 
factor (point focus : 

line focus) 

F(s): o~'(s) 

G(s): --  

Gaussian 0(z) = Ae -az2 1/2a F'(s) : o~ "(s) 
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range 0 < 2 R s < l . 9  and for L/2R=20, 100. This was 
accomplished by a standard numerical procedure. Er- 
rors of integration were reduced to less than 1% for 
all values of 2Rs considered (for small s values to less 
than 0.1%). The function ~-(s). L for plain rods of 
finite length is plotted in Fig. 1 for L/2R=20, 100. In 
addition, for comparison, in Fig. 1 are plotted 
(i) ~ ' (s ) .  L for long plain rods produced by numerical 

L----~oo 

integration of equation (4), after substitution from 
equation (6), (ii) ,~ ' (s) .  L for long Gaussian rods 

L---+ oo 

evaluated from equation (14), (iii) d/[(s). L for long 

Maxwellian rods evaluated from equation (16). 
~ ' ( s )  for finite Gaussian rods was evaluated from 

equations (4) and (8) and the effects of finite rod length 
for plain and Gaussian rods are brought out in Fig. 2 
where the parameter 

d(s) = jn(s)r,~oo - jn(S)L/2R 
jn(s)L/2a 

for a plain rod and the equivalent parameter d'(s) for 
a Gaussian rod are plotted against 2Rs. For Gaussian 
rods with L/R¢ = 401/2 and 2001/2, d'(s) was evaluated 
from equations (14) and (14a) for comparison with the 
exact computer results; these values are also shown in 
Fig. 2. 

Rigid discs 
The shapes chosen for the calculation of F(s) were 

specified by L/2R = 10 -1 and 3 x 10 -1. The line-collima- 
1.101 

tion function ~-(s) was derived from F(s) in the same 
way as for rods for plain discs of both shapes with a 
maximum error of less than 19/0 for Ls < 2. Values of 
~( s ) .  rcR 2 from equations (4) and (5) are shown in 
Fig. 3 for L/2R = 10 -1, 3 x 10 -1. In Fig. 3 values are also 
shown of ~-(s). rcR 2 for a plain disc of large radius 

R---+ oo 

evaluated by the numerical integration of equation (4) 
after substitution from equation (17). 

Calculations for Gaussian discs were restricted to 
discs of large area and for comparison with the results 
for large plain discs the radii of gyration of the two 
shapes were made equal, i.e. Re for the Gaussian disc 
was equated to L/21/3. The function ~- '(s).  zcR 2 [see 
equation (23)] is shown in Fig. 3. R~oo 

INTERPRETATION 
OF EXPERIMENTAL RESULTS: INFINITE LINE 

COLLIMATION CONDITIONS 

Scattering by rigid rods 

(a) Effects of finite rod length 
LWT (1961) discuss the scattering by short Gaussian 

rods and show curves effectively of ,~ ' (s) .  L derived 
from equation 14(a) for L/Rc= 5, 10 and claim that at 
sufficiently large scattering angles the differences be- 
tween the ~- '(s) .  L values for infinitely long and short 
rods are negligible. That this is not so can be seen from 
the differences between the two-term approximation to 
~ ' ( s )  and the exact computer data shown in Fig.2. 
Although the minimum L/Rc value used for calculation 

io(s) 
ceP. (1 - Po~) 2 

1.100 

1.10-1 

CA) 

1.10 -2 

1.10-3 

.......... --:..~.'>,,, --...........~......~. 
\ 

L 
2--R = 100 and oo 

\ 

1.10-. 0'.5 1'.0 1'.5 2.~ 
2 R s  

Fig. 1. Scattering factors for rods (infinite line collimation). Full and dotted line: ~'(s). L for plain rods with given value of L/2R. 
Dashed line: ~-'(s). L for infinite Gaussian rod. Chain-dotted line: .A'(s). L for infinite Maxwellian rod. 

L--+oo L--+ oo 
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was 401/2 the dependence of the curves on this ratio 
indicates that the two-term approximat ion will be in 
considerable error for L/Rc less than about  20. There 
seems no escape from detailed calculations of the line- 
focus function o~-'(s) for short rods to carry to com- 
pletion an interpretation of" experimental  results on the 
basis of  a Gaussian rod. 

Fig. 2 shows that for Gaussian or plain rods, within 
an accuracy equivalent to that of  the measurement  of  
the scattered intensity (perhaps 3 - 5 ~ ) ,  for rods with 

IN 

LI2R > 20 and 2Rs < ,-, 1 the scattering curves may  be 
interpreted as if  the scatterers were infinitely long; only 
these cases will be considered further. 

(b) Effects of rod model on measured parameters 

(i) Very small angles 
It follows from equation (4) that in general the ~-(s) 

values for different rod models will be different. How- 
ever it is necessary to consider the magnitudes of  the 

d(s)(°lo) 41 ~I\ 
and I] ~i\ 

d'(s)(%)3~ ~ \  

21~ ~-... 
\ '~-........ 

. . . . . . . . . . .  

100 

0 0"5 1"0 
2 Rs (= 2#2 Rc s) 

Fig. 2. Effects on scattering factors of finite length of plain and Gaussian rods (see text). Full lines: d(s) for plain rods from 
computer data. Dashed lines: d'(s) for Gaussian rods from computer data. Chain-dotted lines: d'(s) for Gaussian rods from 
two-term approximation. 

in(s) 
c~M(1-Po~) 2 

1 "103 

1 "102 

(A2) 

1 "101 

1 "10 ° 

\ 

\.. 

°°°°°'°°'O°oo,oo.°o°.. 

I 1 "10 -1 0 2"0 

%.°.. 

%o° o~_ ~ L  = ~1 
" ~ . ~  / 2 R  10 ".....~. . . . . . . . . . . .  --~.~. 

. / '  \ '....".:..-..... 
L \ 

2R -0 
015 110 1"5 

Ls 
Fig. 3. Scattering factors for discs (infinite line collimation). Full, chain-dotted, and dotted lines: o~-(s), zcR 2 for plain discs with 

L/2R= 1/30, 1/10, 0 respectively. Dashed line: o~-'(s), z~R2 for Gaussian disc of infinite area. 
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differences and the angular ranges where the differences 
occur. Fig. 1 shows that at small values of s the reduced 
scattering functions are very similar for long rods with 
the same length, mass per unit length and radius of 
gyration. In fact the differences between the numerical 
values of ~ ( s ) .  L and o~'(s). L for 2Rs < 0.1 are less 

L - - +  oo L - - t o o  

than 3 % and the values of o~(s). L and Jg(s) .  L differ 
L---~ oo L---~ oo 

by much less than this in the same angular range. Thus 
the results for long plain, Gaussian or Maxwellian rods 
can equally well be interpreted at small s values by 
equation (14); for small s this equation as substituted 
in equation (3) may be written: 

jn(S)smans--+ -- Celt (1 -- 00 ~,)2 [Ins + In Rc + 1.09]. (26) 

For a general Gaussian rod [equation (15)], the slope 
at small scattering angles of a line of Jn(S) plotted 
against - I n  s is the same as that given by equation (26) 
and allows the determination of it. However, the inter- 
cept on the - l n  s axis is not simply related to the 
radius of gyration. The infinite line collimation equa- 
tion for a general plain rod was not evaluated but it is 
expected that its mass per unit length would be given 
in the same way as for the general Gaussian rod but its 
Rc value would not be readily determined. 

(ii) Intermediate angles of  scattering 

The method given above of interpreting line-focus 
data concentrates attention on the scattering at s < 1/20R 
A -I and it is of interest to examine the method of inter- 
pretation suggested by Luzzati (1960). A number of 
applications of the Luzzati method have been made, 
e.g. by Luzzati, Nicolaieff & Masson (1961) (LNM) to 
the sodium salt of deoxyribonucleic acid and by Luz- 
zati, Cesari, Spach, Masson & Vincent (1961) 
(LCSMV) to the isotropic phase of poly-y-benzyl-L- 
glutamate (PLBG). 

The Luzzati procedure consists in fitting to the ex- 
perimental reduced intensity values, [jn(s)]expt, the fol- 
lowing function which is derived from the case of an 
infinite Gaussian rod [see equation (14)]. 

[jn(s)lexpt = Celt (1 - ~0 ~') z . ½ exp ( -  z~2e2sZ) 
× Ko(z~zo~Zs2)+g(s) (27) 

The values of [jn(s)]expt are plotted against log s on 
the same graph as a curve of log [½ exp (-n2s2)Ko(zr2s2)] 
against log s. The agreement between the curves is 
tested by orthogonal translations of the experimental 
curve to coincide with the known function. To reduce 
the effects of inter-rod interference on the interpreta- 
tion more account is taken of the agreement between 
the curves for solutions of low concentration and for 
large (in terms of small angle scattering) scattering 
angles (see LNM, 1961). In all cases studied by the 
Luzzati group g(s) has been found to be negligibly 
small and ~ has been taken to be equal to Re; this has 
given rise to the assumption that the determined values 

of p and Rc based on a Gaussian rod and without ex- 
trapolations to very small scattering angles are unique. 

To show that the Gaussian rod solution is not unique 
as determined from the scattering at intermediate s val- 
ues and in the presence of experimental errors, curves 
of log[jn(s)/celt(1-Oogt) 2] were plotted against logs  
for infinite plain, Gaussian and Maxwellian rods with 
the same value for/1 and for Rc = 4.7 A as for PLBG. 

At angles less than s ~ 10 -2 A -1 the curves converged 
as expected. At higher angles to superimpose the curve 
for the plain rod on that for the Gaussian rod re- 
quired changes in both p and Rc. If the fit is made at 
s = 5 x  10 -2 A -1 then the ratios arise It (Gaussian)/ 
It (plain)= 1/0.79 and Rc(g)/Rc(p)= 1/1.08. For s =  
4 x  10 -2 A -1 the ratios were It (g)/lt (p)=1/0.87 and 
Re(g)/Rc(p)= 1/1.06. Intermediate values of the ratios 
were found when the results for the Gaussian and 
Maxwellian rods are compared. 

It seems to us that to interpret the scattering results 
from rigid rods a combination is required of an extra- 
polation to small scattering angles to determine It and 
Rc free of the precise nature of the rod model followed 
by an assessment of the degree of fit, over the angular 
range of the experiments, of the intensity calculated 
for various rod models. 

Scattering by rigid discs 

(a) Effects of  finite disc area 
It is clear from Fig. 3 that for L/2R < a-~ the differ- 

ence in the intensity scattered per unit area by discs 
of finite and infinite radius is negligible for Ls < ~ 0.7. 
In most practical cases the ratio L/2R is expected to be 
much less than a-~ and only the case of a disc of large 
area will be considered further. 

(b) Effects of  disc model on measured parameters 

It has been shown [equations (24) and (25)] that 
under line-collimation conditions both M and Re for 
a Gaussian disc may be determined directly. To assess 
the different conclusions that might be drawn from 
using the plain and Gaussian disc models a comparison 
was made between the numerical values of o~(s), r~R 2 

R ----~ oo 

and ~- ' (s) .  z~R 2. The values were found to differ by 
R --~ oo 

less than 2~o within the angular range Ls<0.15. In 
this angular range we have for both models 

[sj,(s)]smans ~ ½ceM (1-~o  qj)2 ( 1 -  ]/4-~/3 Ls) . (28) 

By using this equation, M and Rc may therefore be 
determined free, at least, from the characteristics of 
the plain or Gaussian disc models. However, just as 
for general plain and Gaussian rods, analysis shows 
that for layered discs only M may be determined free 
of model dependence; for general values of A and B the 
slope of a graph of sjn(s) versus Ls is not simply re- 
lated to Re. 
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Conclusion 

It has been shown that the results of two hypothetical 
scattering experiments on an ideal solution of isotropic 
long rods with respectively point and infinite-line col- 
limation conditions may be unequivocally interpreted 
in terms of the same value of mass per unit length re- 
gardless of the details of the rod-model used in the in- 
terpretation. To overcome the effect of the choice of 
model when critical experiments such as those to dis- 
tinguish between the ~ and 310 helices are contemplated 
(LCSMV, 1961) the results show that it is essential to 
determine/z from the very small angle scattering be- 
haviour in the infinite line focus case in contrast to the 
method described by LNM (1961). For infinite-line 
collimation the radial density distribution appropriate 
to the real rod may be deduced, as for point collima- 
tion, from the behaviour of the model scattering func- 
tion and the experimental intensity results at inter- 
mediate and large scattering angles. In every case con- 
sidered where Rc may be readily determined from 
point focus results (where the radial density function 
contains only a single term) Rc may also be readily 
determined directly from the infinite line focus data. 
Similar remarks are valid for the relationships be- 
tween the point and line focus results for discs. 

It seems, therefore, that when there is good reason 
to suppose from other evidence, e.g. electron micro- 
scopy or X-ray diffraction of material in the solid state, 
that the rods or discs can be adequately described by 
a simple density function, there is no point in 'correct- 
ing' the line focus to point focus data. However, if the 
density function contains terms in A and B (Tables 1 
and 2) and a Fourier inversion or a trial and error 
method to determine their values must be used, it is 
far simpler to apply these methods to the point focus 
data and a clear case exists for the 'correction' of the 
line-focus results. 

The similarity between the o~(s) curves for the dif- 
ferent simple rods and different simple discs is due to 
the form of the F(s) curves. The point focus functions 
decrease rapidly with increasing s and for rods or discs 
with the same Rc values are very similar at small 
scattering angles where the scattered intensity is high. 
The small-angle values of o~(s) are therefore relatively 
insensitive to the fluctuations in F(s) that occur at in- 
termediate and large angles. 

When short rods (L/Re< ,-,20) or discs of small 
radius, (L/2R> ,,~sJ-a) are considered, care must be 
taken in accounting for the effects on the scattering of 

the finite particle size. For the L/Rc range of rigid rods 
considered by LWT (1961) the method they advocate 
for correcting for finite rod length is questionable. 

Although the calculations described are for rigid 
rods and rigid discs, the short X-ray wavelength in 
relation to the dimensions of particles suitable for ex- 
amination by the method ensures that the results will 
be virtually unaffected by the flexibility (not for rods 
to be confused with a Gaussian chain) of real rods and 
real sheets. 

The angular regions of the line collimation scatter- 
ing patterns where the nature of the rod or disc model 
is unimportant are at small scattering angles, e.g. for 
a rod 10 A in diameter the region is s < 10 -2 A -1 and 
for a disc 100 A in thickness s <  1.5 x 10 .3 ~k -1. These 
angles are well within the angular range open to ex- 
periment using cameras that are available commer- 
cially. 

One of us (JCD) wishes to acknowledge an M.R.C. 
studentship which was held while part of this work 
was done. The computations were made on the Univer- 
sity of London Atlas computer. 
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